Improving Evolutionary Real-Time Testing by Seeding Structural Test Data

Marouane Tlili, Harmen Sthamer, Stefan Wappler and Joachim Wegener

Abstract—Timing constraints in embedded systems must be satisfied so that real-time embedded systems work properly and safely. Execution time testing involves finding the best and worst case execution times. Evolutionary testing is used to dynamically search for the extreme execution times. During the evolutionary search, some parts of the source code are never accessed. Moreover, it turns out that the search delivers different extreme execution times in a high number of generations. We propose a new approach which makes use of seeding the evolutionary algorithm with test data achieved a high structural coverage. This new method leads to raise the confidence in the results and to gain in efficiency in terms of number of generations needed.

I. INTRODUCTION

Classical methods for determining extreme execution times are based on static analysis and manual estimations [9]. Static analysis methods are limited when the test object contains program control structures such as loops. In this case, loop bounds must be specified manually or can only be estimated. With manual estimations, the program code must be analyzed by hand and the possible execution paths which lead to extreme execution times must be figured out. This process is resource-consuming and error-prone. Furthermore, the shortest execution time can be too optimistic and the longest execution time too pessimistic due to manual estimations. Evolutionary real-time testing (ERTT) is an approach to testing the timing constraints of real-time systems. The test objective is transformed into an optimization problem. An evolutionary algorithm is used to try to solve this problem. The search space is formed by the input domain of the test object (parameter data and global variables). The objective function is based on the execution time needed to execute the test object with the respective input data. This time is either maximized for the worst case execution time (WCET) or minimized for the search for the best case execution time (BCET).

Previous work [3] showed that ERTT outperformed manual testing and random testing of timing constraints. However, in experiments, it can be shown that the results of ERTT are not always reliable. Different test runs produced different extreme execution times. Moreover, the number of generations needed to find the extreme execution times is usually high, even for simple test objects. This means that this method is not efficient. Furthermore, not every part of the test object was executed during the tests. Incomplete coverage decreases the confidence in the test results because the execution of the uncovered parts might lead to improve the extreme execution times. In order to increase the reliability and the confidence in the results achieved by ERTT, we propose a new method to find longer and shorter execution times in less number of generations and in a robust way. The way to achieve this is to seed the evolutionary algorithm with structural test data which help the evolutionary search to explore new regions in the search space. Previous works ([12], [3]) suggest seeding the initial population of the evolutionary algorithms with input data which contain information from the tester or information about the pathology of the program. Our idea is to seed the initial population with test data that lead to a high structural coverage of the test object. In our experiments, we compare this approach with the standard ERTT.

This paper is structured in sections as follows: section II describes the ERTT. Section III shows the limitations of this approach. The new design of the standard ERTT used to improve its reliability is explained in section IV. Section V presents the experiments and their settings, this includes the testing tools, the environment for testing the real-time systems, the evolutionary algorithm settings, the test objects and the analysis of the results. The last section concludes the paper and gives insights on future work and new ideas.

II. EVOLUTIONARY REAL-TIME TESTING

Time testing aims at finding input data for a given test object which result in extreme execution times. For safety-critical systems such as the airbag system of a modern vehicle, the timing constraints play an essential role. It is not acceptable that the system reacts after a specified time limit. During time testing, it must be ensured that the maximum and minimum time limits are satisfied by the function under test.

The traditional test methods lack the property of automating test case generation. For this reason, evolutionary testing (ET) is used. It can be applied to testing non-functional properties, like safety testing, robustness testing and temporal behavior testing. ET can also be employed for the automation of existing test methods like functional testing, structural testing or mutation testing [4].

With ERTT, the extreme execution times are searched for using an evolutionary algorithm. This input domain comprises the parameter data and the global variables which are referenced by the test object. Each individual represents a particular value set for the input space of the test object. For the fitness evaluation, the individuals are converted into test data with which the test object is executed. The execution time is measured and returned to the evolutionary algorithm as an objective value.

The evolutionary algorithm uses these values to select
promising individuals for recombination and mutation in
order to create better ones. Typically, the initial population
of the evolutionary algorithm is generated by random. The
succeeding iterations of the algorithm try to improve this
initial data. The search usually is terminated if no improve-
ment of the extreme execution time can be achieved over a
number of predefined generations or if a configured number
of generations has been reached (see section V-C for details).

III. LACK OF RELIABILITY

Although ERTT is more successful in finding the extreme
execution times than the traditional methods based on static
analysis, this method presents limitations. In order to practi-
cally demonstrate them, experiments on the standard ERTT
were conducted (see section V-C.1) on different test objects
(see table I). The following observations have been made:

• In order to have an idea on what are the parts of
the program covered during the ERTT, the structural
branch coverage of the individuals generated during the
search for the WCET has been measured. The average
branch coverage achieved is 75%. This shows that the
results given by ERTT might not lead to the WCET.
Indeed, the execution of the corresponding branches of
the code which were not visited might help to produce
a longer execution time. This observation shows that
the confidence in ERTT can be further increased if a
larger part of the source code is investigated during the
evolutionary search.

• The delivered execution times are not always the same
for the same test object. This is due to the different
conditions in the code of the test object which must be
satisfied in order to reach an extreme execution time.
For instance, if the true branch of a complex condition
leads to an execution path which needs a large amount
of time during the execution, ERTT is successful only
when this complex condition is satisfied. However,
the objective function which is solely based on the
execution time does not direct the evolutionary search
to satisfy this condition. Consequently, the extreme
execution time can only be found if the condition is
satisfied by random.

In figure 1, there are two common situations where the
evolutionary search is not able to access some control
statements. This happens because the search space is
too large and there is no strategy favoring the execution
of a certain branch in the control-flow graph.

• The number of generations needed for the evolutionary
algorithm is high even for simple test objects. Moreover,
this number is not always the same in all the test
runs. This means that the ERTT suffers from a lack
of efficiency.

In order to find better extreme execution times in a constant
number of generations, we propose a modified design of the
standard ERTT. The initial population of the evolutionary
algorithm is seeded with test data which might cover regions
in the code which were not accessible by the standard ERTT.

IV. EVOLUTIONARY REAL-TIME TESTING USING
SEEDING

The idea behind this work is to provide the evolutionary
algorithm with a high quality initial population to evolve
from and therefore orienting the evolutionary search to new
regions in the search space which might cover new parts in
the source code of the test object. As the seeding strategy
should be efficient, the new evolutionary algorithm settings
should be different from the ERTT with standard settings. For
this standard configuration, the initial population is made
of randomly generated individuals in the search space.
In our work, the selected seeding strategy is to seed the
initial population with input data achieved a high structural
code coverage. As described in section III, some parts of the
source code in the test objects are never covered, the initial
population is seeded with test data which might access these
uncovered regions. In order to make sure that the seeded test
data really cover these new regions, a maximum structural
code coverage is performed prior to seeding. This ensures
that the seeded individuals could execute all the reachable
code.

Different coverage criteria exist for structural testing, for
instance path coverage. It is the most complete of all the cov-
erage testing methods [2]. 100% path coverage is achieved
when every possible path in the program is executed. Unfor-
funately, path coverage is too resource-consuming because
of the significant computational time needed to test the
infeasible paths. Moreover, the efficient automation of such
a method is difficult to achieve [6].

Branch coverage is another structural coverage criterion, it
consists in ensuring that each branch is traversed at least
once in the control-flow graph. Every statement and every
condition in the branches are executed. The automation of
such coverage method is relatively easy to do [11]. Branch
coverage testing was used in this work to generate the test
data for seeding, the testing tool which was used to do such
testing is the ETS-tool [11].

V. EXPERIMENTS

A. Test Environment

1) Testing Tool TESSY: TESSY [13] is a software
testing tool commercially available through Hitex. Its main

d void fun(int a, int b){
 if(a == 0 && b == 0){
 do_something; //cost = 5
 }
 else{
 do_something; //cost = 1
 }
}

d void fun2(int control){
 switch(control){
 case 1:
 do_something; //cost = 5
 break;
 default:
 do_something; //cost = 1
 break;
 }
}

Fig. 1. On the left, the probability to execute the if statement is very low
since the search space is too large. On the right, it is difficult for the variable
control to access the case 1 for the same reason. Cost equals 5 means that
5 units of time are needed to execute this line of code.
A characteristic is to provide a support for different test activities for C-based programs. These activities include test execution, test monitoring, test evaluation as well as a systematic design of test cases, particularly for the functional test. The most important strength of TESSY is that it provides support for the whole testing life cycle. TESSY is a tool that can be used without a profound knowledge of the C-programming language and that permits the separation between the test quality process and the software development process. TESSY facilitates the combination of black-box and white-box tests. For black-box testing, test cases are determined using the classification-tree editor CTE, a graphical editor for the descriptive and systematic design of black-box test cases using the classification-tree method [10].

In our work, TESSY was used to automate the temporal test execution of the functions under test. The automation of ERTT is first done by generating the test driver and establishing the communication between the testing host and the target host. Working in an embedded environment is different from working in a native program development environment; the target host and the testing host system are not on the same hardware as it is the case for desktop applications. In order to run an application in this specific environment, a simulator or a target hardware is required. Two hardware/software configurations have been used in this project. This choice was made in order to test different software functions working on different platforms and to make the experimental test environment be as close as possible to the industrial one. The following configurations have been used to simulate the real-time systems:

- The debugger-simulation environment fast-view66-win from Hitex. It is a windows-based high level language debugger for the C166-ST10 microcontroller families. The C compiler used is the Tasking Compiler 16 bits. It is a special embedded compiler used for a big range of microcontrollers and microprocessors.
- A 32 bit microcontroller MPC555, a Motorola product, it contains a floating point unit designed to accelerate the advanced algorithms operations necessary to support complex applications. It is commonly used in the automotive applications such as engine and transmission control as well as robotics and avionics control. The compiler used with this microcontroller is the DIAB compiler from the company Wind River, it creates executable files which will be downloaded on the MPC555 target board.

Figure 2 shows the communication with the target host during the optimization process. The evolutionary algorithm is implemented in an application called the peanuts server. The algorithms implementation is based on the Genetic and Evolutionary Algorithm Toolbox for Matlab (GEATbx [7]). The different phases of the evolutionary algorithm are executed on the testing host. When the evolutionary algorithm generates the relevant test data whose fitness values (execution times) have to be computed, TESSY sends these test data to the target board or the simulator. The longest or the shortest execution times are measured on the target host and sent back to the testing host computer in order to perform the next steps (selection, recombination, mutation and reinsertion) of the evolutionary algorithm.

For the fast-view66/tasking compiler configuration, the host and the target are on the same computer, whereas the microcontroller MPC555 is on an evaluation board (but installed on the host computer as a peripheral). The host computer used has a Pentium 4 2.66GHz processor, 760MB of RAM and runs Microsoft Windows XP Professional.

2) Testing Tool ETS-tool: The testing tool used to generate the seeded test data is the evolutionary testing system (ETS) tool. Its function is to generate test data based on coverage criteria such as statement, branch and condition coverage. It uses an evolutionary algorithm to perform the structural coverage. In prior works [11], it has been successfully applied to generate test data achieving a high structural coverage and it has proven to outperform the structural random testing.

B. Test Objects

Table I contains software metrics describing the complexity of the test objects. The CYC is the cyclomatic complexity. It corresponds to the number of decisions plus one, a high value corresponds to a complex control flow. The maximum nesting level is the measure NL, KC is the Knot Count which counts the number of break, continue, goto and return statements. The number of logical operators is described by the metric Myer’s Interval (MI). The ELOC is the number of executable lines of code.

These test objects were chosen because they present different structural properties. Some of them have a high cyclomatic complexity value such as BK-4, A-3 and MUZ-11. These examples present also high values for NL and KC. In fact, most of the functions are relatively complex since they have
a cyclomatic complexity higher than 10. A recommended maximum value of the cyclomatic complexity is 10 [5].

<table>
<thead>
<tr>
<th>Name</th>
<th>CYC</th>
<th>NL</th>
<th>KC</th>
<th>MI</th>
<th>ELOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>BK-4</td>
<td>74</td>
<td>7</td>
<td>32</td>
<td>101</td>
<td>293</td>
</tr>
<tr>
<td>A-3</td>
<td>51</td>
<td>4</td>
<td>19</td>
<td>18</td>
<td>232</td>
</tr>
<tr>
<td>MZU-11</td>
<td>50</td>
<td>4</td>
<td>0</td>
<td>22</td>
<td>320</td>
</tr>
<tr>
<td>FIT-7</td>
<td>49</td>
<td>6</td>
<td>21</td>
<td>266</td>
<td></td>
</tr>
<tr>
<td>CC-9</td>
<td>44</td>
<td>17</td>
<td>6</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>MOL-1</td>
<td>42</td>
<td>4</td>
<td>25</td>
<td>136</td>
<td></td>
</tr>
<tr>
<td>BA-10</td>
<td>29</td>
<td>8</td>
<td>0</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>DA-5</td>
<td>23</td>
<td>2</td>
<td>0</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>KINS-8</td>
<td>25</td>
<td>4</td>
<td>16</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>FHD-6</td>
<td>20</td>
<td>2</td>
<td>4</td>
<td>179</td>
<td></td>
</tr>
<tr>
<td>MA-12</td>
<td>10</td>
<td>2</td>
<td>0</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>PED-2</td>
<td>7</td>
<td>2</td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE I

SOFTWARE STRUCTURAL MEASUREMENTS ON THE TESTED FUNCTIONS.

The test objects are ordered by cyclomatic complexity value. These test objects are used in the automotive industry.

C. Experiment Configurations

Each test object has been tested 10 times for the search for the WCET and 10 times for the search for the BCET. For all the experiments, the same evolutionary algorithm settings were applied. This was done in order to be able to compare the outcome of the experiments. These settings for testing the temporal behavior use the so-called Extended Evolutionary Algorithms [8]. The idea is to use different subpopulations. Each subpopulation follows its own search strategy and competes with the other subpopulations. Six subpopulations have been used, each of them contain 40 individuals, which makes 240 individuals in total. The input variables are in integer format, the selection method is stochastic universal sampling, and the selection generation gap is set to 0.9, which means that a new generation is composed of 10% of individuals from the former generation (parents) and 90% from newly created individuals. Recombination is done with the help of discrete recombination. Mutation has also been applied. Each subpopulation is assigned a value for the mutation range, the value used are 0.01, 0.05, 0.001, 0.005, 0.0001 and 0.0005. This ensures that subpopulations are affected differently by mutation. Having different values is important for a local and global search strategy. Since there are parallel subpopulations, competition and migration are applied. Competition takes place every 10 generations, 10% of unsuccessful individuals in the subpopulations are being transferred to successful ones. When the size of a subpopulation reaches the number of 10, no further transfer is done. Migration is used to make sure that information is exchanged between the isolated subpopulations, which happens every 13 generations, and the best individuals (10%) migrate from every subpopulation.

The objective function is the measurement of the execution times of the test data. The termination criterion is the maximum number of generations decided by the tester. This was done by experimenting after how many generations the optimization’s result was not improved (plus 30 to 50% of this value). Such a decision was made with the help of a visualization tool contained in TESSY. The time measure is the number of CPU clock ticks that every individual needed.

1) *Phase 1 - P1:* In this experiment, the tester provides no indications to optimization process. The initial population is created randomly according to an internal procedure implemented in the GEATbx matlab toolbox. The input variables use the full range of their data type, which means that during the optimization, the entire search space might be investigated.

2) *Phase 2 - P2:* In this configuration, test data which achieved a high structural branch coverage are seeded as described in section IV.

D. Experimental Results

During the experiments, the longest and shortest execution times, the standard deviation of the values found in the different test runs and the number of generations needed to reach such values were measured.

1) *Longest Execution Time:* Figure 3 shows the longest execution times for the test objects listed in the table I. For almost all test objects, the configuration using seeding (P2) outperforms the default configuration of ERTT (P1)\(^1\). The improvement ranges from 0% to 41%. Figure 4 shows that the number of generations needed to find the longest execution time has been shortened in practically all the examples in P2.

Concerning the standard deviation of the values found in the 10 test runs for the different test objects, the values found are bigger than 0 in P1, whereas in P2, very small values are found (very close to 0). The extreme values found are

\(^1\)In the rest of this paper, the notations P1 and P2 will refer respectively to the standard ERTT and to ERTT with seeding.

Table II shows the branch coverage achieved using the ETS structural tool. The achieved branch coverage is maximum, the seeded test data cover all the reachable code in the test objects.
more reliable in P2 since the standard deviation is very low and they are more efficient since the number of generations needed has been decreased.

The results also show that in P2 longer execution times were found for most of the test objects except for PED-2 and MA-12. For these two test objects, in both P1 and P2, the same execution times were found. One explanation can be that these two test objects have a relatively simple structure (see table I). However, there is a difference in the results of the two methods, a shorter number of generations was needed for MA-12 in P2, this confirms the fact that the seeding method helps to find more efficient results even if the same execution times were found for both methods.

From the experiments, longer execution times were found in P2. However, one can not be sure in advance if the longest execution time found is actually the WCET. In order to demonstrate this issue, the initial populations for some of the test objects were seeded with individuals which are believed to be fit from the tester’s experience. A longer execution time was found comparing to the value displayed in figure 3 for P2. This shows that although the individuals forming the initial population in P2 achieved a high structural coverage, they might not always help the evolutionary search to explore all parts of the code as these individuals might be discarded if they are not fit in terms of their objective value (the execution time).

2) Shortest Execution Time: Using the default ERRT configuration, it is easier for the optimization process to search for the BCET than to search for the WCET. A reason for this is that only a smaller part of the search space is investigated. For instance, in figure 6, the path leading to the shortest execution time will probably contain the else of the first if statement. This means that only some parts of the code are traversed. A confirmation of this fact is given by the results of the shortest execution times. Figure 5 shows that in both P1 and P2, the same execution time values were found for all the test objects except for four of them. For these test objects (BK-4, BA-10, MA-12 and MZU-11), shorter execution times were found in P2, this shows that the seeding helps the evolutionary search to explore new regions in the search space, which caused to find better optimum. The results found in P2 are also more robust since the...
Fig. 6. Situation showing that the test datum leading to the shortest execution time will execute the else statement of the first if.

Fig. 7. Standard deviation of the shortest execution times found between the different test runs. In P1, the standard deviation varies between 0 and 20,312. Whereas in P2, it is very close to 0.

Fig. 8. Situation of a possible 'shortcut', if the input (a,b,c) = (1,0,0) is not found, the shortest execution time will not be reached.

VI. CONCLUSIONS AND FUTURE WORK

The results of the conducted experiments confirmed the expectations. The seeding method used to improve the ERTT showed that it outperforms the classical ERTT configuration. Longer and shorter execution times were found in more robust and efficient ways.

Concerning the search for the WCET, longer execution times were found for almost all the test objects when these test objects have complex structural properties. The number of generations needed to find the longest execution times was also noticeably reduced and the standard deviation of the values found between the different test runs was decreased. Looking for the BCET is easier for the ERTT because the search space is only partly investigated. This made the ERTT without seeding to find the shortest execution time for 66% of the test objects. The seeding method helped to find shorter execution times for the rest of the functions. It also helped to reduce the standard deviation, thus giving reliable and efficient results.

Nevertheless, the improvement method shows the case where the fitness function of the ERTT only computes the execution time and does not take into account the structural properties of the seeded individuals. This results in discarding some individuals that have interesting structural properties. For example, the fitness function will not only consist of the execution time, but also of the ability of the seeded individuals to execute complex conditions or to access different nesting levels.

A future work might include a new design of the fitness function which should account for the structural properties of the individuals. For example, the fitness function will not only consist of the execution time, but also of the ability of the seeded individuals to execute complex conditions or to access different nesting levels.

Furthermore, experiments shall be performed to know after how many generations and how often the seeding should be done in order to check if this method has an influence on the overall test performance. Given that some of the seeded individuals which have interesting structural properties are discarded during the search, it will be interesting to find out what might happen if these individuals are seeded again after a determined number of generations which will be investigated experimentally.

In our work, the branch coverage was used as a criterion to
generate test data for seeding. This choice has a limitation. The branch coverage concerns only the execution of the conditions as true and false, but it does not handle the execution of all the possible values of the predicates forming the conditions. This has an impact on the execution time since it can differ depending on how many variables are evaluated in a condition. Other structural coverage criteria exist [5], among which a more suitable coverage criterion should be investigated. For instance, one could think of using the multi-condition coverage criterion, this ensures the generation of test cases which will cover all the operands of a given condition, thus helping to optimize the execution time. This idea is applicable only if the testing effort is not very high and if there exists support tools for the automation of this method.

REFERENCES